

# Energy efficiency of inland water ships - and how to improve it

**Dipl. Ing. Thomas Guesnet** 

DST Entwicklungszentrum für Schiffstechnik und Transportsysteme

# **Energy efficiency of inland water ships**



We propose to use the energy efficiency index EEFI as benchmarking index. The index EEOI will have the same relevance, as is obtained by data of ship operation.

 $EEDI = \frac{C_F \times SFC \times P}{Capacity \times V_{ref}}$ 

In fact, this simple expression shows

#### **CO2 Emission / transport performance**

Slow and large ocean vessels will obtain a value of about 5 gr CO2/tkm and RoRo ships or ferries will reach 50 gr. CO2/tkm



The water depth will have an influence two main aspects of transport efficiency :

- The load capacity of the ship
- The speed of the ship



4

# Influence of the water depth on transport efficiency The load capacity

For any ship, keel clearance is necessary to advance and to manoeuvre. The keel clearance should be greater then 0,3 m. As function of the water depth, the load capacity starts at zero and increases until the design draught of the ship is reached.





# Ship speed

The practicable ship speed will increase, more or less proportionally to the root of the water depth. Typical IWS can reach a speed of 22 km/h, depending on the engine power and the hull form. For this speed level, a water depth of abt. 9 m will be necessary.





## **Example: Specific energy consumption**

A IW cargo vessel works 12h per day, the transport distance being 200 km. The transport volume per day depends on load capacity and speed and is therefore a function of water depth:



The fuel consumption depends also on the water depth. As at low rater depth, the travel will take longer, there will be strong offluence on fuel consumption.



The fuel consumption has to seen in relation with the transport volume.



In our example it is obvious that the specific energy consumption will reach a low level at water depth larger then 2,5 m.

The same applies to the specific  $CO_2$ - Emission.



Interesting to see that at water depth larger then 4 m, the IWS transport reaches its best transport efficiency.

DST



Ship type Scale effect Propulsion Ship weight Hull form







#### There is also a scale effect in transport efficiency...

| Тур                                    | <b>L x B</b><br>[m] | <b>¥</b><br>[m³] | <b>dW</b><br>[t] | <b>ms</b><br>[t] | Р <sub>в</sub><br>[kW] | <b>D</b> Р<br>[m] | <b>CO₂</b><br>[g/tkm] |
|----------------------------------------|---------------------|------------------|------------------|------------------|------------------------|-------------------|-----------------------|
| Peniche                                | 39,0 x 5,1          | 450              | 366              | 84               | 309                    | 1,10              | 47,1                  |
| Gustav Koenigs                         | 67,0 x 8,2          | 1178             | 935              | 243              | 549                    | 1,40              | 31,3                  |
| Johann Welker                          | 80,0 x 9,5          | 1672             | 1272             | 400              | 421                    | 1,50              | 17,6                  |
| Gütermotorschiff                       | 110,0 x 11,4        | 2750             | 1900             | 850              | 230                    | 1,85              | 6,4                   |
| Jowi-Klasse                            | 135,0 x 17,0        | 4745             | 3335             | 1410             | 480                    | 3 x 1,74          | 7,7                   |
| Langschiff                             | 150,0 x 15,0        | 4904             | 3404             | 1500             | 390                    | 2 x 1,76          | 6,1                   |
| Schubverband<br>2spurig-2gliedrig      | 193,0 x 22,8        | 8600             | 6260             | 2340             | 1365                   | 3 x 2,05          | 11,6                  |
| Schubverband<br>2spurig-3gliedrig      | 269,5 x 22,8        | 12550            | 9390             | 3160             | 2100                   | 3 x 2,05          | 11,9                  |
| LKW<br>V <sub>mittel</sub> = 72,5 km/h | -                   | -                | 26               | 14               | 320                    | -                 | 37,4                  |
| PKW<br>V <sub>mittel</sub> = 100 km/h  | -                   | -                | 0,5              | 1,4              | 75                     | -                 | 240                   |

#### h = 5,0 m, T = 2,5 m, V = 13 km/h

12



Propeller efficiency plays a key role

 $CO_2$  -emission of a large cargo motor ship (L x B x T = 110,0 m x 11,4 m x 2,5 m)

|                                                    |                        | spezifischer CO <sub>2</sub> -Ausstoß<br>specific CO <sub>2</sub> -exhaust<br>[g/tkm] |                             |                      |  |  |
|----------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|-----------------------------|----------------------|--|--|
|                                                    | Р <sub>в</sub><br>[kW] | zu Berg<br>upstream                                                                   | ohne Strömung<br>streamless | zu Tal<br>downstream |  |  |
| freier Propeller<br>free propeller B-series        | 715                    | 25,3                                                                                  | 16,8                        | 11,5                 |  |  |
| Kaplan-Propeller in Düse ducted propeller K-series | 572                    | 20,2                                                                                  | 12,6                        | 9,2                  |  |  |
| Skew-Propeller in Düse ducted skew-propeller       | 536                    | 18,9                                                                                  | 11,8                        | 8,6                  |  |  |



# Ship light weight

| Тур                                                   | T <sub>max</sub><br>[m] | <b>ms</b><br>[t] | <b>dW</b><br>[t] | dW / ms<br>[ - ] |
|-------------------------------------------------------|-------------------------|------------------|------------------|------------------|
| Peniche                                               | 2,5                     | 84               | 366              | 4,36             |
| Gustav Koenigs                                        | 2,7                     | 243              | 1276             | 5,25             |
| Johann Welker                                         | 2,9                     | 400              | 1940             | 4,85             |
| Gütermotorschiff                                      | 3,2                     | 850              | 2681             | 3,15             |
| Jowi-Klasse                                           | 3,2                     | 1410             | 4761             | 3,38             |
| Langschiff                                            | 3,5                     | 1500             | 5406             | 3,60             |
| Schubverband 2spurig-2gliedrig<br>Pushing train 2+2   | 4,0                     | 2340             | 11200            | 4,79             |
| Schubverband 2spurig-3gliedrig<br>Pushing train 2+2+2 | 4,0                     | 3160             | 16800            | 5,32             |
| LKW                                                   |                         | 14               | 26               | 1,86             |



#### Ship light weight



Marginal influence of ship weight reduction



#### Hull form





## Small changes in the hull form may produce a big difference



#### Hull form



#### CFD calculations are detecting flow separation areas



#### Hull form



Hull with variable geometry



Ship type... As large as theScale effect

Propulsion ...high performance propellers and nozzles

Ship weight ...don't expect too much

Hull form ...still decisive and pays off research